4. Operation
4.1. Battery charging
After applying mains power and remote shut down is not active, the display will show the following:
All icons of the screen will be visible to check the correct functioning of the display.
The back lighting of the display is ON.
Next the firmware version number will be displayed.
Finally, the actual state is displayed on the screen:
By using Voltage sensing, the actual battery voltage is shown.
Output Voltage | Charge current | |
Battery charger mode | State of charge | |
When the mains plug is blinking, the mains voltage is below normal and the charger is reducing the maximum charge current. |
By using Voltage sensing, the actual battery voltage is shown.
4.2. Seven stage charge curve for lead-acid batteries
Figure 3 Voltage and current during different states in battery charging.
4.2.1. Bulk
Entered when the charger is started or when the battery voltage falls below 13.2 V / 26.4 V (due to a heavy load) during at least 1 minute. Constant current is applied until gassing voltage is reached (14.4 V / 28.8 V).
4.2.2. Battery Safe
If absorption voltage is set higher than 14.4 V / 28.8 V, the rate of voltage increase beyond 14.4 V / 28.8 V is limited to 7mV/14mV per minute, in order to prevent excessive gassing.
4.2.3. Absorption
After the absorption voltage has been reached, the charger operates in constant voltage mode.
In case of adaptive charging, the absorption time is dependent on the bulk time, see section 3.2.
4.2.4. Automatic equalization
If automatic equalization has been set to ‘on’, the absorption period is followed by a second voltage limited constant current period: see section 3.3. This feature will charge VRLA batteries to the full 100 %, and prevent stratification of the electrolyte in flooded batteries.
Alternatively, manual equalization can be applied.
4.2.5. Float
After float charge the output voltage is reduced to storage level. This level is not sufficient to compensate for slow self-discharge of the battery, but will limit water loss and corrosion of the positive plates to a minimum when the battery is not used.
4.2.6. Storage
After float charge the output voltage is reduced to storage level. This level is not sufficient to compensate for slow self-discharge of the battery, but will limit water loss and corrosion of the positive plates to a minimum when the battery is not used.
4.2.7. Weekly battery ‘refresh’
Once a week the charger will enter Repeated Absorption-mode during one hour to ’refresh’ (i. e. to fully charge) the battery
4.3. Four stage charge curve for Lithium Iron Phosphate (LiFePo4) batteries
4.3.1. Bulk
Entered when the charger is started, or when the battery voltage falls below 13,5 V / 27,0 V (due to a heavy load) during at least 1 minute. Constant current is applied until absorption voltage is reached (14.2 V / 28.4 V).
4.3.2. Absorption
After the absorption voltage has been reached, the charger operates in constant voltage mode. The recommended absorption time is 2 hours.
4.3.3. Storage
After absorption charge the output voltage is reduced to storage level. This level is not sufficient to compensate for slow selfdischarge of the battery, but will maximize service life.
4.3.4. Weekly battery ‘refresh’
Once a week the charger will enter Repeated Absorption-mode during one hour to ’refresh’ (i. e. to fully charge) the battery.